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Abstract

Modelling irregularly-sampled time series (ISTS) is challeng-
ing because of missing values. Most existing methods fo-
cus on handling ISTS by converting irregularly sampled data
into regularly sampled data via imputation. These models as-
sume an underlying missing mechanism leading to unwanted
bias and sub-optimal performance. We present SLAN (Switch
LSTM Aggregate Network), which utilizes a pack of LSTMs
to model ISTS without imputation, eliminating the assump-
tion of any underlying process. It dynamically adapts its ar-
chitecture on the fly based on the measured sensors. SLAN
exploits the irregularity information to capture each sensor’s
local summary explicitly and maintains a global summary
state throughout the observational period. We demonstrate
the efficacy of SLAN on publicly available datasets, namely,
MIMIC-III, Physionet 2012 and Physionet 2019. The code is
available at https://github.com/Rohit102497/SLAN.

Introduction
An irregularly sampled time series (ISTS) is a multivari-
ate time series recorded at inconsistent or non-uniform
time intervals. Such data can be found in various fields
dealing with complex generative processes, such as me-
teorology (Mudelsee 2002), seismology (Ravuri et al.
2021), user social-media activity logs (Zeng and Gao
2022), e-commerce transactions (Wu, Hernández-Lobato,
and Ghahramani 2013), epidemiological and clinical re-
search (Shrive et al. 2006; Yadav et al. 2018). The missing-
ness in ISTS data can be categorized (Rubin 1976) as miss-
ing completely at random, missing at random and missing
not at random (MNAR) (Ma and Zhang 2021). In contrast
to the first two categories, the cause of the missingness in
MNAR relates to unobserved data. Thus, modelling applica-
tions concerning ISTS with MNAR data is challenging. In
this paper, we model ISTS with MNAR. We refer to ISTS
with MNAR as only ISTS for ease of reading. Fig. 2b shows
a pictorial representation of the ISTS data.

Many methods handle ISTS by filling missingness via
imputation converting ISTS to regularly sampled time se-
ries (Fig. 2a), assuming an underlying missing mechanism
(Ipsen, Mattei, and Frellsen 2020). Imputation is the process
of filling up missing values with estimated values whenever
input is not observed. The imputation can be performed via
forward filling, mean (Che et al. 2016), interpolation (Shukla
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Figure 1: Best imputation model (GRU-D for M-3 and P-
12 and GRU-Simple for P-19) vs our model (SLAN) per-
formance. As the number of missing values increases (from
M-3 to P-19), the performance of the best imputation model
compared to SLAN deteriorates. The negative sign in the
difference bar denotes the performance of SLAN is better.

and Marlin 2018), model-based technique (Lim et al. 2021),
etc. However, any form of imputation alters the original na-
ture of the data with artificial and sub-optimal approxima-
tion leading to unwanted distribution shifts (Zhang et al.
2023). This is evident from Fig. 1 where the best imputation-
based ISTS model’s performance deteriorates compared to
our model (non-imputation based) as the number of imputed
observations increases.

We argue that learning the imputation task is challenging
because of the underlying missing mechanism and is not re-
quired for the downstream task. Some non-imputation meth-
ods (Horn et al. 2020; Vaswani et al. 2017) exist in the lit-
erature but do not properly exploit the temporal structure of
missing values. It is worth noting that MNAR datasets are
not simply incomplete but rather contain informative miss-
ingness (Rubin 1976). Therefore, specialized methods are
required to handle such missingness in a meaningful way.

We present Switch LSTM Aggregate Network (SLAN),
which utilizes a pack of LSTM to handle multivariate ISTS.
Our proposed model exploits the irregularity information of
the ISTS data to maintain the local summary state for each
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(a) Regularly sampled time series  (b) Irregularly sampled time series  (c) Problem representation for one instance
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Figure 2: (a) A snapshot of multi-variate regularly sampled time series for ith instance. m represents the index of the sensor.
(b) A snapshot of multi-variate irregularly sampled time series (ISTS) for ith instance. (c) Problem representation of the ISTS
with respect to one instance by omitting the subscript i. (Best viewed in colour)

observed time series. In most practical situations, these time
series are coming from sensor measurement. The model is
equipped with a switch layer that enables it to adapt to the
input order of measured sensors dynamically. SLAN main-
tains a global summary state aiding each LSTM with sum-
marised information throughout the observational period.
Since the clinical domain data exhibits the characteristics
of ISTS with MNAR, we show the efficacy of our model on
three such publicly available datasets: MIMIC-III (Johnson
et al. 2016), PhysioNet 2012 (Goldberger et al. 2000) and
PhysioNet 2019 (Reyna et al. 2019). The main contributions
of our work are: (1) SLAN eliminates the need for missing
value imputation in ISTS data. (2) A simple switch layer
is introduced to guide the activation of appropriate LSTM
blocks. (3) We improve the decay function in LSTMs by in-
troducing a sampling rate. (4) We employ an aggregate func-
tion to maintain the summary state of the model.

Related Works
Imputation-Based Models Previous works such as (Mar-
lin et al. 2012; Harutyunyan et al. 2017; Rasmussen and
Williams 2003) and IP-Nets (Shukla and Marlin 2018) pro-
pose to convert ISTS to regularly sampled time series by
temporal discretization. They perform imputation using a
probabilistic model (Marlin et al. 2012) or interpolation (IP-
Nets). The main drawback of these methods is that they re-
quire either ad-hoc choices such as width and the aggrega-
tion function (Marlin et al. 2012) or a predefined nonlinear
form assuming that missingness is at random (IP-Nets), thus
inducing bias. GRU-based (Che et al. 2016) methods like
GRU-mean and GRU-forward directly impute input by the
global mean value and the last measured value, respectively,
without any temporal discretization. GRU-simple (Che et al.
2016) and Phased-LSTM (Neil, Pfeiffer, and Liu 2016) go
one step ahead and use the missing values indicator as ad-

ditional information along with the imputed input for RNN-
based models. These methods lead to a potential distribution
shift. Unlike above, other imputation methods use a model-
based approach to infer the missing values. GRU-D (Che
et al. 2016) imputes the missing input by employing learn-
able decay on the global mean and the last measured value.
Overall, these models perform imputation, assuming an un-
derlying missing mechanism leading to unwanted bias. Al-
beit they perform well, this does not justify making use of
biased data. A detailed discussion on various imputation-
based models is presented in supplementary S1.

Non-Imputation Models Recent approaches have also
explored learning directly from the ISTS data without any
form of imputation. Transformer (Vaswani et al. 2017) based
models have been widely used for modelling time series
data, including ISTS. These approaches mainly replace the
positional encoding with an encoding of time and model se-
quences using self-attention and concatenate it with the in-
put representation. The main drawback of these methods is
the permutation-invariant nature of self-attention, which can
be problematic in capturing dependencies within each time
series. Another work, SeFT (Horn et al. 2020) proposed to
learn from irregularly-sampled data via set-based data rep-
resentation, treating time series as an unordered set of mea-
surements. However, the order-invariant nature of set repre-
sentation fails to capture the irregularity information, which
is order-variant and increases with time. Raindrop (Zhang
et al. 2021) proposes a graph neural network to learn a sen-
sor dependency graph. Raindrop leverages inter-sensor de-
pendency to train latent embeddings. However, Raindrop
does not exploit the irregularity information of the sensors.
This is one of the main motivations of our model, as we not
only exploit the irregularity explicitly but also preserve the
temporal information and maintain a global summary state
throughout the observational period. More information on



the non-imputation models is given in supplementary S1.

Problem Formulation
Regularly Sampled Time Series Consider a dataset rep-
resented by D = {X,Y }, where X is a set of instances
given by X = {X1, ..., Xn}, Y is the set of label given
by Y = {y1, ..., yn} and n is the total number of in-
stances. Xi is a time series for ith instance given by Xi =
{Xi,1, ..., Xi,li} where li is the number of time steps ith

instance was measured. Xi,j is the set of measured values
of all sensors at time ti,j , given by Xi,j = {x1

i,j , ..., x
s
i,j}.

Here, xm
i,j represents the measured value of sensor m for ith

instance at time ti,j and s is the total number of sensors/fea-
tures. We represent all sensors by their indices and the set of
indices of sensors is given by M = {1, ..., s}. We present a
snapshot of multi-variate regularly sampled time series data
of ith instance in Fig. 2a considering s = 3 and li = 4. Note
that ti,2 − ti,1 need not be equal to ti,3 − ti,2.

Irregularly Sampled Time Series (ISTS) ISTS follows
the definition of regularly sampled time series, except not
all sensors will be measured at each time step leading to
an irregular sampling of each sensor. This is mathematically
given as Xi,j ⊆ {x1

i,j , ..., x
s
i,j}. A snapshot of ISTS for

ith instance is shown in Fig. 2b where Xi,1 = {x1
i,1, x

3
i,1},

Xi,2 = {x2
i,2, x

3
i,2}, Xi,3 = {x1

i,3} and Xi,4 = {x1
i,4, x

2
i,4}.

Problem Representation For simplicity, we omit the sub-
script i representing an instance and consider only one in-
stance to discuss the problem and the working of the pro-
posed model. In that sense, each measured value is given by
xm
j (instead of xm

i,j) and it is received at time tj (instead of
ti,j). Let us denote this instance by Z = Xi and the set of
values of measured sensors at time tj by Zj . Based on this,
at each time step tj , we represent the measured sensors as
Zj = (tj ,

⋃
∀m∈Aj

{(xm
j ,∆m

j )}) where Aj is the set of sen-
sors measured at time tj , given by Aj ⊆ M. ∆m

j denotes
the time delay between two successive values measured by
sensor m, i.e., ∆m

j = tj − tk, where k = max(1, ..., j − 1)
such that m ∈ Ak. Thus the whole input data is given by
Z =

⋃l
j=1{Zj} where l is the number of time steps. Fol-

lowing the previous paragraph, we visually present the data
representation and the corresponding equations in Fig. 2c.

SLAN: Switch LSTM Aggregation Network
SLAN is an adaptive LSTM-based model that dynamically
changes its architecture depending on the measured sensors
at any time point by utilizing a switch layer. The architec-
ture of SLAN is presented in Fig. 3a. It consists of a pack of
LSTMs such that there is a one-on-one connection between
a sensor and an LSTM block. This is facilitated by the switch
layer (see the yellow-colored box in Fig. 3a). Each sensor is
connected to its corresponding LSTM block by a switch. A
switch goes ”on” if its corresponding sensor is measured;
otherwise, it stays off. The ”on” switch results in activating
its corresponding LSTM block, thus, eliminating the need
for any imputation. The LSTM block outputs a long-term
memory (LTM) and a short-term memory (STM) (Fig. 3b).

Algorithm 1: Switch LSTM Aggregate Network

Require: Model M with s LSTM block, switch layer and
aggregation function as shown in Fig. 3a
for i in instances do

Initialize hm
0 and c0 for each m

while time tj do
Receive measured sensors input Zj (see Fig. 2c)
Create switch layer Sj from measured sensors Aj

Activate LSTM blocks corresponding Sj
for Lm in active LSTM blocks do

Calculate hm
j , cmj by eq. 3

end for
Calculate cj using aggregation function by eq. 2

end while
Decay final hidden states (hm

l< ) of each sensor (eq. 5)
Concat all decayed final hidden states (h̃m

l∗ ) and final
summary state (cl) to get concat layer C

Predict ŷ using eq. 4
Update M based on the loss

end for

The LTM of each activated LSTM block is aggregated to
produce a global summary state and passed on to all the
LSTM blocks for the next time step as input. This aids the
LSTM blocks with summarised information. The previous
short-term memory (STM) of each activated LSTM block is
decayed based on the time delay and decay function (Fig.
3c) and passed as an input for the next measured time point.
This acts as a local summary for each sensor. Finally, at the
last time point, the STM from each LSTM block is decayed
and concatenated with the aggregated LTM as seen in the
concat layer in Fig. 3a. The concat layer is then fully con-
nected to a 2-node output layer for binary classification. The
unrolled SLAN architecture for the data example given in
Fig. 2c is presented in Fig. 3e and discussed in detail in sup-
plementary S2. The pseudo-code of the SLAN architecture
is given in Algorithm 1.

Architecture
SLAN consists of s LSTM blocks {L1, ..., Ls} where Lm is
associated with sensor m. We define the switch layer (Sj) as
the set of switches kept ”on” based on the measured sensors
at time tj . Since there is a one-on-one correspondence be-
tween a switch and its corresponding measured sensor, we
borrow the representation of Sj as the indices of the sensors
measured at time tj from the Problem Formulation section,
thus Sj = Aj . Each active LSTM block (Lm) at time tj
takes the sensor value (xm

j ), STM (hm
j−1), LTM (cmj−1) and

time delay (∆m
j ) as inputs and outputs hm

j and cmj , given by

(hm
j , cmj ) = Lm(xm

j , hm
j−1, c

m
j−1,∆

m
j ) ∀m ∈ Sj (1)

where Lm ∀m ∈ Aj are active based on Sj at time tj . An
aggregate function is employed on the LTM of the active
LSTM blocks to get a summary state (cj) at tj . Any func-
tion that can group multiple values to give a single summary
value can be used as an aggregation function and is repre-
sented by agg(). Some examples of aggregation functions
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Figure 3: (a) Snapshot of SLAN Architecture. Here xm
j ,∆m

j , hm
j , cmj denotes the input, time delay, short-term memory, and

long-term memory at time tj of mth sensor and LSTM block. The closed circuit in the switch layer means that a particular
switch is ”on”, otherwise it is ”off”. The X sign in red implies that there is no input or output to the corresponding LSTM block.
Agg denotes the aggregate function. (b) The inner working of the LSTM block is given here. (c) The decay of the previous
hidden state is shown here. (d) Important notations are denoted in the legend. (e) Unrolled SLAN architecture based on the
example from Figure 2c is presented here. (Best viewed in colour)

are mean, max and attention. The summary state is given as

cj = agg(
⋃

∀m∈Sj
{cmj }) (2)

The cj is used as an input for the next time step for every ac-
tive LSTM block. An active LSTM at tj might not be active
at tj−1. Thus, the STM input to Lm at tj is represented by
hm
j< (instead of hm

j−1) where j< = max(1, ..., j − 1) such
that m ∈ Sj . Thus, eq. 1 can be updated as:

(hm
j , cmj ) = Lm(xm

j , hm
j< , cj−1,∆

m
j ) ∀m ∈ Sj (3)

Finally, the hidden states (or STM) of all the LSTM block
and the summary state is concatenated to give a final output.
The hidden states are decayed before concatenating to en-
sure that the contribution of each hidden state is accounted
for based on the last time it was measured. The decayed

hidden state at tj is represented by h̃m
j and is given by

the eq. 5. For simplicity, we introduce an auxiliary time tl∗
which is equal to tl. All the hidden states are decayed (rep-
resented by h̃m

l∗ ) based on ∆m
l∗ where ∆m

l∗ = tl − tk and
k = max(1, ..., l) such that m ∈ Ak. Thus the concat layer
is given by C = {cl, h̃1

l∗ , ..., h̃
s
l∗}. A fully-connected net-

work is employed to get a final prediction from C as follows

ŷ = F (C) (4)

Hidden State Decay Since the measurement of each sen-
sor is irregular, we employ a time-decay function on the
hidden states inspired by (Che et al. 2016). The time-decay
function can be any monotonic non-increasing function Fm

d
(e.g. e−z), ensuring that the previous local summary is min-
imized if the sensor is measured after a long time interval



Table 1: Description of the MIMIC-III, Physionet 2012 and Physionet 2019 (early sepsis prediction) datasets. #Instances denotes
the number of patient records in the datasets, #Sensors denotes the number of features/sensors in each instance, #Observations
denotes the average number of observations recorded in each instance, i.e., the number of time steps, Measured ratio denotes the
ratio of the total number of data measured by the total number of data measured in a fully available dataset, #Num-Imputation
is the number of imputation or missing values and Imbalance denotes the percentage of instances with a minority class label.

Dataset #Instances #Sensors #Observations(avg.) Measured ratio (%) #Num-Imputation Imbalance (%)

MIMIC-III 21110 17 77.7 32.5 7.5× 106 13.22
Physionet 2012 11988 37 74.9 11.6 28.0× 106 14.24

Physionet 2019 (ESP) 40333 34 38.5 19.8 42.3× 106 1.79

i.e., a large value of ∆m
j . Since each sensor is different, the

decaying function should differ for each. Thus, a trainable
time-decay function is employed. Moreover, each sensor has
a different sampling rate, defined as the number of diagnoses
of each sensor per hour. Thus, we introduce a sampling rate
in the decay function to inculcate the different decay inter-
vals of sensors. The sampling rate of sensor m is represented
by rm, and the decay of the hidden state is given by

γm
j = exp{−max(0, amγ rm∆m

j + bmγ )}

h̃m
j = γm

j × hm
j<

(5)

where γ is the decay ratio and a, b are learnable decay
parameters. For the concat layer, the decay is achieved by
substituting j with l∗ in eq. 5 where hm

l∗< = hm
k and

k = max(1, ..., l) such that m ∈ Sk.

Working of an LSTM Block The gates of Lm at time tj
are denoted by forget gate (fm

j ), input gate (imj ) and output
gate (omj ). Based on the decayed hidden states (h̃m

j ) given by
eq. 5 and summary state (cj−1) given by eq. 2, the working
of Lm is given in eq. 6. We indicate the changes in the SLAN
LSTM block compared to a vanilla LSTM (Hochreiter and
Schmidhuber 1997) by underlining in the eq. 6.

fm
j = σ(Wm

f xm
j + V m

f h̃m
j + bmf )

imj = σ(Wm
i xm

j + V m
i h̃m

j + bmi )

omj = σ(Wm
o xm

j + V m
o h̃m

j + bmo ) (6)

c̃mj = tanh(Wm
c xm

j + V m
c h̃m

j + bmc )

cmj = fm
j cj−1 + imj c̃mj

hm
j = omj tanh(cmj )

Discussion
SLAN vs GRU-D When data is missing, GRU-D per-
forms input imputation and hidden state decay. The input
is imputed as xd

t = md
tx

d
t +(1−md

t )γxd
t
xd
t′ +(1−md

t )(1−
γxd

t
)x̃d where md

t is the masking value, γ is the decay fac-
tor, xd

t′ is the last observation of the dth variable (t
′
< t)

and x̃d is the empirical mean of the dth variable. The hid-
den state is decayed as γj = exp{−max(0, aγ∆j + bγ)}.
When the data is not missing, GRU-D just performs the hid-
den state decay to capture richer knowledge from missing-
ness. Thus, GRU-D performs imputation only when the data

is missing. Whereas, in SLAN, when data is missing, the
switch of the LSTM corresponding to that data value is ’off’.
Hence, we don’t perform any form of imputation. When data
is not missing, SLAN performs the hidden state decay (eq.
5) to capture information from time delay (∆m

j ). The decay
in SLAN also differs from GRU-D as SLAN introduces a
sampling rate (rm) in the decay function (eq. 5) to incul-
cate the different delay intervals of sensors. Hence, SLAN is
different from GRU-D and not an imputation model.

Switch Layer in SLAN vs Observation Mask in Trans-
former The switch layer dynamically changes the archi-
tecture of SLAN (see supplementary S2) to adapt to miss-
ing values by explicitly informing the model which LSTM
blocks will be active. This is different from the observation
mask in Transformers. The architecture of the Transformer
is fixed, where the observation masks are concatenated with
the input value and passed as input to the model. The Trans-
former implicitly learns the meaning of observational masks
via training.

Experiments
Datasets We consider MIMIC-III, Physionet 2012 and
Physionet 2019 datasets to showcase the efficacy of SLAN.
These datasets are widely used for the ISTS study. The
description of the datasets is given in Table 1. We pre-
pare the datasets by following SeFT (Horn et al. 2020).
For MIMIC-III and Physionet 2012, the mortality predic-
tion task is considered and for Physionet 2019, early sepsis
prediction (ESP) is done. Therefore, in ESP, after each ob-
servation time, sepsis is predicted. We refer to MIMIC-III,
Physionet 2012 and Physionet 2019 (ESP) as M-3, P-12 and
P-19, respectively. The datasets are skewed with 13.22%,
14.24% and 1.79% positive labels for M-3, P-12 and P-19,
respectively, making them challenging datasets. The number
of missingness is 7.5×106, 28×106 and 42.3×106 for M-3,
P-12 and P-19 dataset leading to high irregularity. A detailed
description of the dataset is presented in supplementary S3.

Baselines We consider both non-imputation and imputa-
tion baselines. Among imputation, GRU-D (Che et al. 2016),
IP-Nets (Shukla and Marlin 2018), GRU-Simple (Che et al.
2016) and Phased-LSTM (Neil, Pfeiffer, and Liu 2016) are
considered. The non-imputation baselines are Transformer
(Vaswani et al. 2017), SeFT (Horn et al. 2020) and Rain-
drop (Zhang et al. 2021). We do not run most of the baseline
models since we follow the exact data preprocessing steps,



Table 2: Comparison of various methods on M-3, P-12 and P-19 datasets. Imp and No-Imp represent imputation models and
non-imputation models, respectively. The best and 2nd best performance is represented by bold and UNDERLINE, respectively.
The metric is reported as the mean ± standard deviation of three runs with different seeds.

Model MIMIC-III Physionet 2012 Physionet 2019 (ESP)

AUPRC AUROC AUPRC AUROC AUPRC AUROC BAcc Unorm

I
m
p

GRU-D 52.0±0.8 85.7±0.2 53.7±0.9 86.3±0.3 5.3±0.4 67.4±1.2 57.4±0.2 12.6±1.1
IP-Nets 48.3±0.4 83.2±0.5 51.0±0.6 86.0±0.2 5.1±0.8 74.2±1.2 63.8±0.9 -11.9± 4.0

GRU-SIMPLE 43.6±0.4 82.8±0.0 42.2±0.6 80.8±1.1 6.1±0.7 78.1±1.5 71.0±1.4 26.9±4.1
Phased-LSTM 37.1±0.5 80.3±0.4 38.7±1.5 79.0±1.0 5.5±0.9 75.4±1.3 67.5±1.7 20.2±3.2

N
o
-
I
m
p TRANSFORMER 42.6±1.0 82.1±0.3 52.8±2.2 86.3±0.8 3.6±0.9 65.8±3.7 53.6±1.7 -43.9±10.0

SeFT 46.3±0.5 83.9±0.4 52.4±1.1 85.1±0.4 4.8±0.2 76.8±0.9 70.9±0.8 25.6±1.9
RAINDROP 34.8±1.4 79.3± 0.9 48.8±3.1 84.3±1.1 7.6±0.2 78.1±0.4 69.3±0.8 48.4±0.1

SLAN (Ours) 45.7±0.9 84.9±0.2 54.9±0.4 86.2±0.2 9.7±0.6 80.5±2.0 71.8±2.9 48.1±0.3

splits and metrics implementation of SeFT. We report their
performance directly from the SeFT paper in Table 2. We
only run RAINDROP ourselves. See supplementary S4 for
its implementation details.

Comparison Metrics The datasets are imbalanced, thus,
we use the area under the receiver operating characteris-
tic (AUROC) and the area under the precision-recall curve
(AUPRC) as comparison metric. Moreover, for P-19, we
also consider the balanced accuracy and utility metric as re-
ported in SeFT. See supplementary S5 for more details.

Implementation Details We consider the train-val-test
split of all datasets provided in SeFT. To handle the imbal-
ance (Table 1), we resort to a weighted-oversampling strat-
egy for M-3 and P-12 and weighted loss for P-19. Weighted
oversampling involves preparing the training batch by sam-
pling the data based on the class weights given by the inverse
frequency of the class. For weighted loss, the class weights
are 0.5094 and 26.9973 for negative and positive labels of
P-19. The models are trained for 30 epochs with an early
stopping of 5 on AUPRC to avoid overfitting. SLAN uses
cross-entropy loss, AdamW optimizer, data standardization,
and mean aggregate function. The dropout is 0.3 and the
short-term and long-term memory size is 32. The learning
rate is 0.0005, 0.0001 and 0.0005 for M-3, P-12 and P-19
datasets, respectively. The learning rate is adaptive with de-
cay by a factor of 0.5 after each epoch without improve-
ment. The batch size is 32, 16 and 32 for M-3, P-12 and
P-19 datasets, respectively. Since P-12 and P-19 dataset has
6 and 4 static features, respectively, the embedding of these
features is concatenated in the final concat layer before ap-
plying a fully connected layer for prediction. The size of the
embedding is kept equal to the size of the global summary
state. We ran experiments on an Intel Xeon E5-2630 v3 (8
cores/CPU) machine. More details on implementation are
given in supplementary S4.

Results The results of M-3, P-12 and P-19 datasets are
presented in Table 2. For the P-12 dataset, SLAN performs
best across all the methods in terms of AUPRC and second
best in terms of AUROC. In terms of AUROC, SLAN per-
forms only marginally poor (86.2) in comparison to the best

performance (86.3). In M-3, SLAN gives the second-best
result in AUROC and 4th best in AUPRC. SLAN outper-
forms all the other models by significant margins for P-19
datasets in AUPRC, AUROC and balanced accuracy. Over-
all, SLAN performs competitively on all the datasets. More-
over, the performance of SLAN improves compared to the
best imputation model as the number of imputation val-
ues increases from the M-3 (7.5×106) to the P-19 dataset
(42.3×106) (see Fig. 1). Thus, SLAN justifies the need for a
better non-imputation model.

Ablation Studies
We perform several ablation studies to investigate the effi-
cacy of SLAN architecture. All the following experiments
of SLAN in M-3 and P-12 datasets are performed by follow-
ing the implementation details given in the previous section,
unless otherwise stated.

Different Aggregation Methods We compare the perfor-
mance of SLAN for mean, max and simple attention (Bah-
danau, Cho, and Bengio 2014) as the aggregation function
to calculate the global summary state. In attention, the nor-
malized weightage of the LTM of each active LSTM block
is determined using a single-layer feed-forward neural net-
work followed by the weighted average of LTMs to output
the global summary state. In max, the element-wise max is
performed over the candidate summary states. The compar-
ison is reported in the upper half of Table 3. The perfor-
mance of max is lower than both attention and mean be-
cause max may downplay the contribution of many LTMs
by highlighting just one, thus becoming sensitive to outliers.
Among mean and attention, attention performs the best in
P-12, whereas mean gives better results in M-3.

De-mistifying Concat Layer SLAN’s concat layer con-
sists of a global summary state and the local summary state
of each sensor. We remove the global summary state from
the concat layer to check the informativeness of the local
summary state (see Only L.S. in Table 3). When compared
with the default setting of SLAN, i.e. G.S. + L.S., Only L.S.
is slightly poorer (max by ∼0.9%). This is due to the fact



Table 3: Comparison of the performance of SLAN for different aggregation
functions and variants of concat layer. Att stands for attention. G.S. stands for
global summary state and L.S. stands for local summary state. G.S. + L.S. is
the default setting of SLAN.

MIMIC-III Physionet 2012

AUPRC AUROC AUPRC AUROC

Aggregation Function
Max 43.5±0.5 84.1±0.6 54.8±0.3 85.9±0.3

Att 44.8±1.2 84.4±0.6 55.3±0.4 86.2±0.4
Mean 45.7±0.9 84.9±0.2 54.9±0.4 86.2±0.2

Concat
Only G.S. 40.4±1.3 82.8±0.6 48.1±1.3 83.1±0.4
Only L.S. 45.3±1.2 84.9±0.2 54.5±0.8 86.0±0.2
G.S.+L.S. 45.7±0.9 84.9±0.2 54.9±0.4 86.2±0.2
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Figure 4: Performance of SLAN on different
percentages of training datasets. The average
with 95% confidence interval of 3 runs with
random seed is reported here.

that the local summary state contains individual sensor in-
formation and is also aided by the global summary state
at each time step. SLAN with only global summary states
in the concat layer (Only G.S.) performs 12.4% and 3.6%
poorer than G.S. + L.S. in terms of AUPRC and AUROC on
P-12. Only G.S. performs 11.6% and 2.5% poorer than G.S.
+ L.S. in AUPRC and AUROC, respectively for M-3. Indeed
Only G.S. performs significantly poorer than G.S. + L.S.,
still it contains sufficient summarised information to outper-
form baseline models like Phased-LSTM in both datasets,
GRU-Simple in P-12 and Latent-ODE in M-3 (see Table 2).

Data Scalability In the practical setting, it is important for
any model to have data scalability meaning the performance
of the model on test data should improve as the amount of
training data increases. We consider the first 25%, 50%, 75%
and 100% training data for both P-12 and M-3 and train our
model on them. The average and the 95% confidence inter-
val of 3 different runs of SLAN on the test data are shown
in Fig. 4. The performance of SLAN steadily increases with
the increasing amount of training data on both datasets. The
percentage improvement of AUPRC for M-3, when trained
on 50% data compared to 25% data is 6.2%, 75% data com-
pared to 50% data is 5.2% and 100% data compared to 75%
data is 2.9%. Transitioning from 25% to 50% data, we dou-
ble the number of instances thus the percentage improve-
ment is highest. Whereas when trained on 100% data com-
pared to 75% data, we add only 1/3rd data thus the percent-
age improvement is lowest. The same trend is followed in
the AUROC of M-3, AUPRC and AUROC of P-12. The ex-
act value of both metrics is given in supplementary S6.

Limitations (1) Time Requirement: SLAN processes all
the activated LSTM at tj , then calculates the global sum-
mary state, which is used for time tj+1. Thus, SLAN works
in a serialized manner. Moreover, the current implementa-
tion of SLAN processes each activated LSTM block one by
one at time tj . This results in an algorithmic complexity of

O(npq), where n is #Instances, p is #Sensors and q is #Ob-
servations (see Table 1 for definition). SLAN takes 2211.1
and 3749.4 seconds per epoch compared to 7.62 and 20.1
seconds per epoch of SeFT on P-12 and M-3, respectively.
High time requirement is a limitation of our model with re-
spect to other faster models. We plan to eradicate this prob-
lem in our future work.

(2) Scalability to #Sensors: In the current implementation
of SLAN, the time complexity is linearly dependent on the
number of sensors. Therefore, SLAN may not be scalable
to applications with many sensors. However, it should be
noted that the datasets used in this paper are standard for
ISTS applications and can be considered a good represen-
tation of practical applications. SLAN handles the 17 fea-
tures of the M-3 dataset as well as the 37 features of the
P-12 dataset seamlessly. Thus SLAN is sufficiently scalable
to handle practical scenarios.

Conclusion

We propose a Switch LSTM Aggregate Network (SLAN)
to handle missing not at random multivariate irregularly-
sampled time series data without any imputation. The com-
petitive performance of SLAN and various ablation studies
empirically demonstrate the effectiveness of our proposed
model on ISTS data. We also establish the sub-optimal per-
formance of the imputation model compared to SLAN as
the number of imputations increases. Moreover, the SLAN
framework can be extended for modelling multi-modality
data, like adding clinical notes to sensor measurement data
(Zhang et al. 2023). SLAN can also be leveraged for stream-
ing data modelling in an online setting with time-variant di-
mensions (Agarwal et al. 2023a,b). It would also be interest-
ing to see the application of SLAN in other fields. We plan
to explore the above fields in the future.
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Supplementary
S1 - Baseline Models

Imputation-based models
GRU-D (Che et al. 2016) proposed GRU-D which exploits
missingness by considering two main missingness represen-
tation methods: masking and timestamps, to devise effective
solutions to characterize the missing patterns. The proposed
model aims to use the masking information and temporal
pattern in the missingness via the two trainable decay terms.
The decay is calculated as

γt = exp{−max(0,Wγδt + bγ)} (7)

where γ is the decay parameter at time t, W and b are model
parameters to learn the decay. GRU-D decays the hidden
states as

ht−1 = γht
⊙ ht−1 (8)

where ht−1 is the hidden state from time t − 1 and γht is
decay value of hidden state at time t.

GRU-D further imputes the input missing value whenever
the input data is missing. The imputation is done by the fol-
lowing equation

xd
t = md

tx
d
t +(1−md

t )γxd
t
xd
t′ +(1−md

t )(1−γxd
t
)x̃d (9)

Here, md
t represents the masking value which is 1 if the sen-

sor is measured otherwise 0, γxd
t

is the decay factor, xd
t′ is

the last observation of the dth variable (t
′
< t) and x̃d is the

empirical mean of the dth variable. Thus, the missing input
feature is imputed whenever not measured.

IP-Nets (Shukla and Marlin 2018) proposed
Interpolation-Prediction Networks which consist of an
interpolation network followed by a prediction network.

In the interpolation network, IP-Nets convert irregu-
larly sampled time series to regularly sampled time series
(RSTS). It uses the information from each time series to in-
terpolate values of all the other time series. IP-Nets consid-
ers a set of reference time points r = [r1, ..., rT ]. All the
reference time points are evenly spaced within its interval.
For each sensor of an instance, IP-Nets output three inter-
polants (cross-channels, transient component and intensity)
corresponding to each reference point and a sensor. Thus,
the interpolation network takes ith ISTS instance (Xi) as in-
put and outputs ith RSTS interpolated output (X̂i) where the
dimension of X̂i is (3s) × T . Here, s is the number of sen-
sors/features, T is the number of reference time points and 3
represents the number of interpolants corresponding to each
time point for each sensor.

Finally, in the prediction network, X̂i is used as an input
to produce the final prediction as ŷi = gθ(X̂i).

GRU-Simple (Che et al. 2016) considers GRU-Simple ar-
chitecture as a baseline for GRU-D. Here for each missing
value, GRU-Simple concatenates the imputed inputs, miss-
ing indicator and the time delay (time duration for which the
input was missing) and passed it as an input to the GRU.
This is given by

xn
t = [xn

t ;m
n
t ; δ

n
t ] (10)

where xn
t is imputed via the global mean of each variable or

using forward imputation.
Latent ODE is an imputation-based model (Chang et al.

2023). (Rubanova, Chen, and Duvenaud 2019) introduced
Latent-ODE which does not impute data as a preprocessing
step but rather models the probability of observation times
using Poisson processes to estimate missing observations.
It has been shown to perform well in the interpolation and
extrapolation tasks.

Phased-LSTM (Neil, Pfeiffer, and Liu 2016) proposed an
extension of LSTM with an additional time gate that oper-
ates with parameterized rhythmic oscillation and contributes
to the updation of memory cells to deal with the irregu-
lar pattern of sampling. Phased-LSTM cannot handle un-
aligned measurements as subject to its design which is for
asynchronous, event-triggered updates in continuous time.
Thus, in order to deal with the problem of missing values
resulting from the ISTS data, imputation is required. Any
imputation technique, such as, mean, forward-filling, etc.,
can be used. SeFT uses imputation similar to GRU-Simple
(See Appendix of (Horn et al. 2020)).

Non-Imputation models
Transformer The architecture of the Transformer
(Vaswani et al. 2017) is fixed, where the observation masks
are concatenated with the input value and passed as input to
the model. The transformer learns implicitly via training the
meaning of positional encoding (observational masks) and
which sensors are not measured. Moreover, the architecture
of SLAN is completely different from Transformer and
can better capture the temporal dependencies within each
time series. This can be further empirically seen by the
performance of SLAN compared to the transformer in
MIMIC-III, Physionet 2012 and Physionet 2019 datasets,
where SLAN outperforms the transformer significantly in
most of the metrics.

SeFT (Horn et al. 2020) proposed set functions for time
series (SeFT) to handle ISTS. SeFT considers sequential
ISTS data as a set of observations, losing the order-variant
nature of the data. Each observed input of a sensor is con-
sidered a data point and passed to a multi-layer perceptron
to give an output. All the outputs are aggregated and a neu-
ral network is applied to the aggregate for a final prediction.
The order-invariant nature of set representation fails to cap-
ture the irregularity information which is order-variant and
increases with time. Since ISTS data is sequential, consider-
ing it as a set-based representation is detrimental to the per-
formance of SeFT. Moreover, ISTS data exhibits a temporal
nature, therefore, the informativeness associated with miss-
ingness grows with time. For e.g., the result of a diagnosis
of the patient on admission day has an influence on the med-
ical attention they need the next day. Therefore, we advocate
that to better understand the missingness information found
in ISTS data, the temporal order is important and hence se-
quential processing is important too. SeFT, although passes
the time information as input, still does not capture the tem-
poral order nor exploits the sequential processing.
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Figure 5: Unrolled SLAN architecture based on the example in Figure 2c of the main manuscript. (Best viewed in color)

Raindrop The authors (Zhang et al. 2021) propose a graph
neural network-based method to jointly learn dependency
graphs and fixed dimensional embedding for each sensor for
downstream tasks. Each node in a graph corresponds to a
sensor. At each observed input, Raindrop updates the cor-
responding nodes embeddings. Moreover, it considers that
there is a relation between different nodes. Thus Raindrop
uses message aggregation to estimate the observation em-
bedding for each related node. This is achieved using sensor
dependency graphs.

S2 - Unrolled SLAN: Showcasing the Dynamic
Adaptability of SLAN

An unrolled architecture (see Figure 3e in the main
manuscript) based on the snapshot of an instance (see Fig-
ure 2c in the main manuscript) is given in the main paper.
We present the detailed workflow of the unrolled SLAN ar-
chitecture here. For ease of reading, we also provide here
the same unrolled SLAN architecture in Figure 5 (from left
to right). The progression of SLAN at each time step is dis-
cussed next.

• At time t1, we receive input Z1 =
(t1, {(x1

1,∆
1
1), (x

3
1,∆

3
1)}). Based on the measured

sensors, the switch layer is S1 = {1, 3}, indicating
switch 1 and switch 3 are ”on”. Thus, the associated
LSTM blocks L1 and L3 are activated. The hidden states
(h1

0, h
2
0, h

3
0) and summary state (c0) is initialized ran-

domly. The time delay is ∆1
1 = ∆3

1 = 0. Using eq. 3 (see
main manuscript), we get (h1

1, c
1
1) = L1(x1

1, h
1
0, c0,∆

1
1)

and (h3
1, c

3
1) = L3(x3

1, h
3
0, c0,∆

3
1) where the inner work-

ing of Lm is given by eq. 6 (see the main manuscript).
The LTM (c11, c

3
1) is aggregated to give the next summary

state c1.
• At time step t2, Z2 = (t2, {(x2

2,∆
2
2), (x

3
2,∆

3
2)}), thus

S2 = {2, 3}. Corresponding LSTM L2 and L3 are kept
active. The previous hidden state of L2 and L3 are h2

0
and h3

1 respectively. The time delay is ∆2
2 = ∆3

2 =
t2 − t1. We calculate (h2

2, c
2
2) = L2(x2

2, h
2
0, c1,∆

2
2) and

(h3
2, c

3
2) = L3(x3

2, h
3
1, c1,∆

3
2) using eq. 3 (see the main

manuscript). Based on this, the summary state c2 is given
by agg(c22, c

3
2).

• At time t3, the input is Z3 = (t3, {(x1
3,∆

1
3)}), time delay

is ∆1
3 = t3−t1 and switch layer is S3 = 1 . Thus we com-

pute (h1
3, c

1
3) = L1(x1

3, h
1
0, c2,∆

1
3) and c3 = agg(c13).

• Next at time t4, we get (h1
4, c

1
4) = L1(x1

4, h
1
3, c3,∆

1
4) and

(h2
4, c

2
4) = L2(x2

4, h
2
2, c3,∆

2
4) where ∆1

4 = t4 − t3 and
∆2

4 = t4 − t2.

Finally, we decay the hidden states to concatenate. To
achieve this, an auxiliary time t4∗ is introduced such that
t4∗ = t4 and ∆1

4∗ = 0, ∆2
4∗ = 0 and ∆3

4∗ = t4−t2. The hid-
den states are decayed using eq. 5 (see the main manuscript)
to get h̃1

4∗ , h̃2
4∗ and h̃3

4∗ . The decayed hidden states and the
summary state c4 where c4 = agg(c14, c

2
4) are concatenated

to give C = {c4, h̃3
4∗ , h̃

2
4∗ , h̃

1
4∗}. A fully connected layer is

employed to give the final prediction as ŷ = F (C) (see eq.
4 in the main manuscript). This demonstrates the simplicity
of SLAN in dynamically adapting the irregularly sampled
sensor measurements without any need for imputation.

S3 - Datasets
MIMIC-III MIMIC (Johnson et al. 2016) is a dataset of
stays of patients in the critical care unit at a large tertiary care
hospital. It has 21142 stays of unique patients (instances)
with a median length of stay of 2.1 days. A total of 17 phys-
iological measurements, like vital signs, medications, etc.,
are recorded for each patient. Following SeFT (Horn et al.
2020), we remove 32 instances. The discarded instances
contained dramatically different recording frequencies com-
pared to the rest of the dataset. Thus, the total number of in-
stances is 21110. The statistics of the datasets can be found
in Table 1 in the main manuscript. We train our model for
the in-hospital mortality prediction tasks.

Physionet 2012 Physionet Mortality Prediction Challenge
2012 (Goldberger et al. 2000) is a dataset of 12000 patient
records (instances) containing measurements taken during
the first 48 hours of the ICU stays. Each instance is as-
sociated with 37 time series variables (sensors) like blood



Table 4: Hyperparameters of all the models. This table is adapted from SeFT (Horn et al. 2020). *All the experiments of
Raindrop are done by us.

Model MIMIC-III Physionet 2012 Physionet 2019

GRU-D lr: 0.00016, bs: 32, n units: 256,
dropout: 0.0, recurrent dropout:
0.2

lr: 0.00138, bs: 512,
n units: 128, dropout: 0.1,
recurrent dropout: 0.1

lr: 0.0069, bs: 128, n units: 512,
dropout: 0.3, recurrent dropout:
0.3

IP-Nets lr: 0.00062, bs: 16, n units: 256,
dropout: 0.2, recurrent dropout:
0.1, imputation stepsize: 1.0,
reconst fraction: 0.2

lr: 0.00035, bs: 32, n units: 32,
dropout: 0.4, recurrent dropout:
0.3, imputation stepsize: 1.0,
reconst fraction: 0.75

lr: 0.0008, bs: 16, n units: 32,
dropout: 0.3, recurrent dropout:
0.4, imputation stepsize: 1.0,
reconst fraction: 0.5

GRU-Simple lr: 0.00011, bs: 32, n units: 512,
dropout: 0.3, recurrent dropout:
0.4

lr: 0.00022, bs: 256, n units:
256, dropout: 0.0, recur-
rent dropout: 0.0

lr: 0.00024, bs: 64, n units:
1024, dropout: 0.3, recur-
rent dropout: 0.3

Phased-LSTM lr: 0.00576, bs: 32, n units:
1024, use peepholes: False,
leak: 0.01, period init max:
1000.0

lr: 0.00262, bs: 256, n units:
128, use peepholes: True, leak:
0.01, period init max: 1000.0

lr: 0.00069, bs: 32, n units:
512, use peepholes: False, leak:
0.001, period init max: 100.0

Transformer lr: 0.00204, bs: 256,
warmup steps: 1000, n dims:
512, n heads: 8, n layers: 2,
dropout: 0.4, attn dropout:
0.0, aggregation fn: mean,
max timescale: 100.0

lr: 0.00567, bs: 256,
warmup steps: 1000, n dims:
512, n heads: 2, n layers: 1,
dropout: 0.3, attn dropout:
0.3, aggregation fn: max,
max timescale: 1000.0

lr: 0.00027, bs: 128,
warmup steps: 1000, n dims:
128, n heads: 2, n layers: 4,
dropout: 0.1, attn dropout:
0.4, aggregation fn: mean,
max timescale: 100.0

SeFT lr: 0.00245, bs: 512,
n phi layers: 3, phi width:
64, phi dropout: 0.1,
n psi layers: 2, psi width:
64, psi latent width: 128,
dot prod dim: 128, n heads:
4, attn dropout: 0.1, la-
tent width: 256, n rho layers:
2, rho width: 512, rho dropout:
0.1, max timescale: 1000.0,
n positional dims: 8

lr: 0.00081, bs: 512,
n phi layers: 4, phi width:
128, phi dropout: 0.2,
n psi layers: 2, psi width:
64, psi latent width: 128,
dot prod dim: 128, n heads:
4, attn dropout: 0.5, la-
tent width: 32, n rho layers: 2,
rho width: 512, rho dropout:
0.0, max timescale: 100.0,
n positional dims: 4

lr: 0.00011, bs: 64,
n phi layers: 4, phi width:
32, phi dropout: 0.0,
n psi layers: 2, psi width:
64, psi latent width: 128,
dot prod dim: 128, n heads:
4, attn dropout: 0.1, la-
tent width: 512, n rho layers:
3, rho width: 128, rho dropout:
0.0, max timescale: 10.0,
n positional dims: 16

Raindrop* lr: 0.001, bs: 128, dropout:
0.3, obs embedding size:
4, n layers: 2, regulariza-
tion scale: 0.02, lr decay:
0.1, time representation size:
16, linear mapping size: 20,
auxiliary attributes dimension:
17, edge pruning: 50%

lr: 0.0005, bs: 128, dropout:
0.2, obs embedding size:
4, n layers: 2, regulariza-
tion scale: 0.02, lr decay:
0.1, time representation size:
16, linear mapping size: 20,
auxiliary attributes dimension:
37, edge pruning: 50%

lr: , bs: 128, dropout: ,
obs embedding size: 4,
n layers: 2, regulariza-
tion scale: 0.02, lr decay:
0.1, time representation size:
16, linear mapping size: 20,
auxiliary attributes dimension:
34, edge pruning: 50%

SLAN lr: 0.0005, bs: 32, dropout:
0.3, early stopping: 5,
short term memory size:
32, long term memory size:
32, lr decay rate: 0.5, ag-
gregation function: mean,
data standardization: True

lr: 0.0001, bs: 16, dropout:
0.3, early stopping: 5,
short term memory size:
32, long term memory size:
32, lr decay rate: 0.5,
static feat embeddings size:
32, aggregation function:
mean, data standardization:
True

lr: 0.0005, bs: 32, dropout:
0.3, early stopping: 5,
short term memory size:
32, long term memory size:
32, lr decay rate: 0.5,
static feat embeddings size:
32, aggregation function:
mean, data standardization:
True, class weights: (0.5094,
26.9973)



Table 5: Performance of state-of-the-art RAINDROP (Zhang et al. 2021) on Physionet 2012 and MIMIC-III datasets. DP and
LR represent dropout and learning rate hyperparameter setting respectively. All the metrics are reported as the mean ± standard
deviation of 3 runs with different seeds.

DP LR MIMIC-III Physionet 2012

AUPRC AUROC AUPRC AUROC

5e-2 14.0±3.1 52.5±7.6 18.7±3.1 60.2±5.6
1e-2 29.9±3.5 74.4±3.4 23.1±0.1 67.6±0.2

0.2 5e-3 33.8±0.5 78.2± 0.3 30.5±9.3 72.3±6.1
1e-3 34.6±1.4 79.2± 0.9 47.9±1.3 84.0±0.6
5e-4 33.6±0.8 78.9±0.4 48.8±3.1 84.3±1.1
1e-4 34.7±0.7 79.0± 0.5 47.3±2.3 83.3±0.9

5e-2 11.8±1.6 49.2±5.1 16.8±3.7 55.4±7.7
1e-2 30.4±2.3 76.0±2.3 22.7±0.2 67.4±0.5

0.3 5e-3 35.0±1.9 79.2± 0.4 28.4±7.3 71.3±4.7
1e-3 34.8±1.4 79.3± 0.9 46.9±2.2 83.3±1.5
5e-4 33.7±1.0 79.0± 0.5 48.3±1.6 84.0±0.5
1e-4 34.1±0.6 79.0± 0.5 48.1±2.3 83.6±0.6

SLAN(Ours) 45.7±0.9 84.9±0.2 54.9±0.4 86.2±0.2

pressure, lactate, respiration rate, etc and six static descrip-
tor features (i.e., RecordID, Age, Gender, height, ICUType
and Weight). We follow the SeFT (Horn et al. 2020) paper
and remove 12 instances that do not contain any time series
information at all. The weight feature is considered a time
series since it is measured multiple times in the observation
period. The final dataset has 11988 instances with 37 fea-
tures. We train our model on the in-hospital mortality task,
which is a binary classification task to predict if the patient
dies before being discharged by using the data of the first
48 hours of the ICU admission. The statistics of the datasets
can be found in Table 1 in the main manuscript.

Physionet 2019 Physionet 2019 Sepsis Early Prediction
Challenge (Reyna et al. 2019) launched a challenge for early
prediction of sepsis from clinical data. Physionet 2019 has
40333 instances from three different hospitals in the US.
It has 34 time series variables (like Heart rate, Platelets,
Cholesterol, Temperature etc) and four static variables (age,
gender, height and ICU type). The data contains a binary la-
bel corresponding to each observed time for each instance
(or patient), indicating the onset of sepsis within the next 6h
to 12h. We consider the train-val-test split provided in SeFT
(Horn et al. 2020). Since, at each observation time, sepsis
is predicted, the number of labels for Physionet 2019 (ESP)
data is 1552093. Considering the sepsis prediction task, the
dataset is highly imbalanced, with 1.852% positive labels.

S4 - Implementation Details
We report the hyperparameters of all the models in Table 4.
This table is adapted from the SeFT (Horn et al. 2020) paper.

GRU-D, IP-Nets, GRU-Simple, Phased-LSTM, Trans-
former, SeFT Since we follow the exact data preprocess-
ing steps and splits of SeFT, we do not run these base-
line models ourselves. We directly take the performance re-
ported in the SeFT paper and report it in Table 2 of the main

manuscript. The hyperparameters of all these models can be
found in Table A.5. of the SeFT paper. For ease of reading,
we provide the same hyperparameters reported in SeFT in
Table 4 of this supplementary.

Raindrop We use the Raindrop code provided in the of-
ficial RAINDROP GitHub repository1 to conduct all exper-
iments on Raindrop model (Zhang et al. 2021). All the de-
fault settings of Raindrop are considered for training: obser-
vation embedding size (Ru) is set as 4, the number of heads
in the transformer encoder is chosen as 2, λr is set as 0.02
to adjust the regularization scale, the batch size is fixed at
128, the binary cross-entropy loss function is used and the
scheduler with a learning decay factor of 0.1 and patience
equals to 1 is employed. Furthermore, we follow the data im-
balance handling strategy provided by RAINDROP where
sampling is done from the collection of one times the major-
ity class and three times the minority class samples (Zhang
et al. 2021). To determine the best performance of Raindrop,
We perform the hyperparameter search for learning rate and
dropout. Two different dropouts for all the datasets are con-
sidered: 0.2 and 0.3. Six different learning rate for Phys-
ionet 2012 and MIMIC-III datasets is considered: 0.05, 0.01,
0.005, 0.001, 0.0005 and 0.0001. Physionet 2019 (ESP) re-
quires high amount of GPU and run-time. So, we ran Rain-
drop on P-19 with the default setting of dropout = 0.2 and
learning rate = 0.0005. All the models are run 3 times with
different seeds for 30 epochs. The performance of Raindrop
on these different hyperparameters is shown in Table 5.

SLAN A detail of different hyperparameters used for the
final performance is reported in Table 4. To determine the
best performance of SLAN, we varied the values of differ-
ent hyperparameters. We opted for finding the best hyper-
parameter one at a time. First, we fixed the learning rate as

1https://github.com/mims-harvard/Raindrop/



Table 6: Performance of SLAN when trained on different percentages of training data. The AUPRC and AUROC are reported
for Physionet 2012 and MIMIC-III datasets. The metric is reported as the mean ± standard deviation of three runs with different
seeds.

Model Physionet 2012 MIMIC-III

AUPRC AUROC AUPRC AUROC

25% 52.0±0.7 84.5±0.7 40.1±1.1 81.2±0.7
50% 54.0±0.5 85.4±0.2 42.6±0.4 83.7±0.1
75% 54.4±0.3 86.0±0.1 44.4±1.5 84.4±0.1
100% 54.9±0.4 86.2±0.2 45.7±0.9 84.9±0.2

0.0005 and varied the batch size to 16, 32, 64, 125, 256 and
512 to find the best batch size. Then, we varied the size of
hidden units (short-term memory and long-term memory) to
1, 2, 4, 8, 16, 32 and 64. Finally, based on the best batch size
and hidden unit size, we varied the learning rate to .0001,
.0005, .001 and .005. All the other hyperparameter values
were fixed heuristically. Indeed, the above procedure of find-
ing the best hyperparameter is not optimum. But, since the
model takes a large training time, we opted for the above
process.

S5 - Comparison Metrics
AUROC AUROC stands for the area under the receiver
operating characteristics and it informs the discriminative
ability of the model between positive labels and negative
labels. For binary classification, based on different thresh-
olds, different true positive rates (TPR) and false positive
rate (FPR) is achieved. This gives an ROC curve and the
area under this curve is AUROC.

AUPRC The area under the precision-recall curve
(AUPRC) is similar to AUROC but instead of the TPR as
the y-axis, precision is used and instead of FPR as the x-
axis, recall is used. It is mainly used for imbalanced data
where the focus is on correctly classifying positive labels.

Balanced Accuracy The balanced accuracy (Brodersen
et al. 2010) metric deals with imbalanced datasets and is de-
fined as the average of recall obtained on each class.

Utility Metrics The models are also compared on util-
ity metric introduced by (Reyna et al. 2019). For each
instance (or patient) i, based on the prediction at time
tj , a utility function U(i, tj) is used to calculate the
reward for the model. All the reward is summed over
all the instances (n) across all the time points (li), i.e.,
Utotal =

∑n
i=1

∑li
j=1 U(i, tj). The score is then normal-

ized as Unorm = Utotal∑n
i=1 li

.

S6 - Data Scalability
In the practical setting, it is important for any model to have
data scalability meaning the performance of the model on
test data should improve as the amount of training data in-
creases. We consider the first 25%, 50%, 75% and 100%
training data for both Physionet 2012 and MIMIC-III and
train our model on them. The exact values of AUPRC and

AUROC are shown in Table 6 and the results are discussed
in the main manuscript (see paragraph Data Scalability in
the section Ablation Studies). The average ± standard devi-
ation of 3 runs is reported here.


