ROHIT AGARWAL

□ (+47) 98423599 | ■ agarwal.102497@gmail.com | ○ Rohit102497 | in Rohit102497 | ○ rohit102497.github.io | G Address: 109 Idunnvegen 9, 9019 Tromsø, Norway

Research Interests: Scalable AI Models, Online Learning, Varying Feature Space, Time Series, Large Language Models

EDUCATION

June (2021-2025)	Doctor of Philosophy in Artificial Intelligence <i>UiT The Arctic University of Tromsø, Norway</i> Title: Scalable AI architectures for modeling complex dynamic systems Objective: Develop machine learning architectures and concepts to model varying feature space in online learning.
	Supervisor: Prof. Dilip K. Prasad, Prof. Alexander Horsch & Prof. Krishna Agarwa
June(2015-2020)	5-year Integrated M.Tech in Mathematics And Computing
DEGREE	Indian Institute of Technology (ISM) Dhanbad, India
GOLD MEDALIST	Passed with distinction
GPA: 9.49/10	Thesis Title: Deep Learning for Streaming Classification Grade: A+
<u>.</u>	Objective: Proposed a deep learning model based on the hedge algorithm and online gradient descent to model dimension-varying inputs in online learning. Supervisor: Prof. Garib Nath Singh & Prof. Dilip K. Prasad

Publications	Total - 13 Journal - 3 Conference - 4	Under Review - 4 Arxiv - 2

Conference

MABNet: Master Assistant Buddy Network with Hybrid Learning for Image Retrieval \diamond Authors: **R Agarwal**, G Das, S Aggarwal, A Horsch, D Prasad PAPER | CODE | ICASSP 2023 Outcome: Introduced a hybrid learning network comprising two blocks, where one operates under supervised learning and the other under self-supervised learning, improving the decision boundary. \rightarrow Keywords: Python, PyTorch, Computer Vision, ViT, ResNet, Supervised Learning, Self-Supervised Learning

Auxiliary Network: Scalable and Agile Online Learning for Dynamic System with Inconsistently Available Inputs

◇ Authors: R Agarwal, K Agarwal, A Horsch, D Prasad
 PAPER | CODE | ICONIP 2022
 Outcome: Proposed a neural network architecture designed to dynamically scale according to the dimension variations in the input feature space at any given time instance.

ightarrow Keywords: Python, PyTorch, Online Learning, Dimension Varying Inputs, Multilayer Perceptron

DSC-IIT ISM at WNUT-2020 Task 2: Detection of COVID-19 informative tweets using RoBERTa \diamond Authors: S Laxmi, **R Agarwal**, A Sinha PAPER | CODE | WNUT, ACL 2020 Outcome: Employed a RoBERTa model to classify tweets related to COVID-19 as informative or uninformative. This model was compared with various conventional and transformer-based models. \rightarrow Keywords: Python, PyTorch, RoBERTa, BERT, Natural Language Processing

C-Net: Contextual Network for Sarcasm Detection \diamond Authors: A Jena, A Sinha, **R Agarwal**

PAPER | CODE | FIGLANG, ACL 2020

Outcome: Proposed a BERT-based architecture to sequentially model context and response sentences, thereby generating probabilities of sarcasm. These probabilities were subsequently fused using exponential smoothing to produce the final prediction.

ightarrow Keywords: Python, PyTorch, BERT, Exponential Smoothing, Natural Language Processing

Journal

Aux-Drop: Handling Haphazard Inputs in Online Learning Using Auxiliary Dropouts \diamond Authors: R Agarwal, D Gupta, A Horsch, DK PrasadPAPER | CODE | TMLR 2023Outcome: Proposed a novel concept that imparts scalability to any online deep learning architectures, enabling them to handle dimension-varying input streams in an online learning setting. \rightarrow Keywords: Python, PyTorch, Online Learning, Varying Feature Space, Multilayer Perceptron

SegPC-2021: A challenge & dataset on segmentation of Multiple Myeloma plasma cells from microscopic images

◊ Authors: A Gupta, ..., **R Agarwal**, et. al.

PAPER | CODE | MIA 2023

Outcome: Proposed a transformer-assisted convolution network for cell instance segmentation on the SegPC dataset challenge and achieved the third-best result.

 \rightarrow Keywords: Python, PyTorch, Instance Segmentation, Computer Vision

Taxonomy of hybridly polarized Stokes vortex beams

◊ Authors: G Arora, A Butola, R Rajput, R Agarwal, et. al.
 PAPER | OPTICS EXPRESS 2024
 Outcome: Proposed a generalized diffraction-based Stokes polarimetry approach assisted with deep learning methods for efficient identification of Stokes singular beams.

ightarrow Keywords: Python, PyTorch, Computer Vision, ResNet, DenseNet, SqueezeNet, VGG, AlexNet

Under Review

packetLSTM: Dynamic LSTM Framework for Streaming Data with Varying Feature Space \diamond Authors: **R Agarwal**, P Naidu, K Agarwal, A Horsch, D Prasad

Outcome: Introduced a scalable recurrent neural network model capable of adapting to a varying feature space in an online learning setting and effectively mitigating catastrophic forgetting. \rightarrow Keywords: Python, PyTorch, RNN, LSTM, GRU, Varying Feature Space, Online Learning

Online Learning under Haphazard Input Conditions: A Comprehensive Review and Analysis \diamond Authors: **R Agarwal**, A Das, A Horsch, K Agarwal, D Prasad PAPER | CODE Outcome: Comprehensive models and dataset categorization, accompanied by extensive benchmarking and promoting open-source resources.

ightarrow Keywords: Python, Pytorch, Varying Feature Space, Numpy, Sklearn, Classical ML Models, Neural Networks

Modelling Irregularly Sampled Time Series Without Imputation Authors: R Agarwal, A Sinha, D Prasad, M Clausel, A Horsch, M Constant, X Coubez

 ◊ Authors: R Agarwal, A Sinha, D Prasad, M Clausel, A Horsch, M Constant, X Coubez
 PAPER | CODE
 Outcome: Introduced a novel LSTM-based network coupled with a simple switch approach to handle irregularly sampled time series without imputation.

 \rightarrow Keywords: Python, PyTorch, LSTM, Time Series, Missing Data

An UltraMNIST classification benchmark to train CNNs for very large images \diamond Authors: D Gupta, U Bamba, A Thakur, A Gupta, **R Agarwal**, et. al. Outcome: Presented an UltraMNIST dataset, comprising 56,000 large images with a resolution of 4000 \times 4000 resolution for propelling the development of CNNs for large scientific images. Additionally, benchmarked current CNN models on the UltraMNIST dataset. \rightarrow Keywords: Python, PyTorch, Computer Vision, CNN, FasterRCNN, ResNet

Arxiv

 Transformer assisted convolutional network for cell instance segmentation

 ◇ Authors: D Pandey, P Gupta, S Bhattacharya, A Sinha, R Agarwal
 PAPER | CODE | 2021

 Outcome: Proposed a transformer-based approach to enhance the performance of the conventional convolutional feature extractor in the existing region proposal-based methods.
 → Keywords: Python, PyTorch, Instance Segmentation, Computer Vision

Simulation-supervised deep learning for analysing organelles states and behaviour in living cells \diamond Authors: A Sekh, I Opstad, **R Agarwal**, et. al. PAPER | 2020 Outcome: Proposed physics-based modeling of microscopy data to generate supervised training datasets, enabling the study of mitochondrial states and behavior in heart muscle cells. \rightarrow Keywords: Python, Data Labelling, Mitochondria, Simulation Dataset, Computer Vision, U-Net

WORK EXPERIENCE

May - August 2023	Visiting Researcher at NUS, Singapore Host: MOHAN KANKANHALLI, NCRIPT-LAB Performed in-depth analysis of haphazard inputs and related fields. Implemented all the models that are not open-sourced and established dataset and models taxonomy. \rightarrow Keywords: Python, PyTorch, TDigest, Numpy, Sklearn.
Aug 2020 -	Software Engineer at Adobe Inc., Bangalore, India Manager: Lokendra Singh Chauhan
May 2021	Part of the internal cloud operations team of Adobe, dealing with deploying various applications and day-to-day operations.
	ightarrow Keywords: Python, GitHub, Kubernetes, AWS, Azure, Puppet, Terraform, Ansible, Chef, CI/CD.
Feb-June	Research Intern at UiT The Arctic University of Norway Guide: Dr. DILIP K. PRASAD
2020	Developed a scalable architecture for streaming classification tasks. Additionally, developed a pipeline for simulating mitochondria and their motion.
Certificate	ightarrow Keywords: Python, Keras, Tensorflow, MLP, Homographic Transformation, Microscopy.
May-July	Intern at Adobe Inc., Bangalore, India Manager: Sunil Bannur
2019	Cloud storage prediction of enterprises and individual customers of Adobe.
Certificate	ightarrow Keywords: Python, Keras, Tensorflow, StatsModels, ARIMA, MLP, LSTM, Encoder Decoder.
May-July	Summer Research Fellow at NIBMG Kalyani, India Guide: Dr. Samsıddhi Bhattacharjee
2018	Predicting the Single Nucleotide Polymorphisms (SNPs) associated with a disease by analyzing their characteristics using classical machine learning methods. Report with Code
Certificate	\rightarrow Keywords: R, Glm, RandomForest, Rpart, Logistic and Lasso Regression, CART, Fisher's Exact Test.

PROJECTS

September 2020	<i>Command Line Utility to crawl web</i> Developed a command line (bash-type) utility tool to report the statistics of website like the number of external links, internal links, broken links, load time, etc. and provide the web-report in user defined format like csv, json, yaml format. It stores the data in a shelve database. O GitHub link
<i>Aug 2019 -</i> Jan 2020	An Improved Estimation Procedure for Population Mean in Presence of Non-Response Guide: Prof. GARIB NATH SINGH, Indian Institute of Technology, Dhanbad Hansen and Hurwitz (1946) proposed an estimator by taking a sub-sample from non-respondents. We are developing an improved estimator that considers the auxiliary information in non-response. manuscript
Aug-Dec 2018	Individual Player's Performance Indicators for ODI or T20 International Cricket Matches Mathsport Asia 2018 Guide: Prof. GORDON HUNTER, Kingston University London Individual player's performance was analyzed by evaluating his contribution both over several games, and to the team's performance in a single match using Principal Component Analysis.
Aug-Dec 2018	Competitive Balance in Football Leagues: Domestic vs International Mathsport Asia 2018 Developed a cost function to calculate the competitiveness of a football league. It compares the com- petitiveness among the leagues and also within a league over seasons. G CitHub link
Jan-March 2018	Dow Jones Industrial Average Price Prediction Academic Project at IIT (ISM) Dhanbad, India <i>Guide: Prof.</i> GARIB NATH SINGH Stock Prices of Dow Jones Industrial Average were forecast using time series analysis. Autoregressive Integrated Moving Average model was applied. ARIMA(0,2,1) gave a Standard Error 0.42.
October 2017	Health And Economic Problems Due To Severe Weather Events Implemented a visualization model in R on U.S. National Oceanic and Atmospheric Administration's (NOAA) storm database which addresses events most harmful to the human population health and have greatest economic consequences.

ACTIVITIES

Academic

CO-SUPERVISOR	Aaron Celeste, Master at Department of Computer Science, UiT Tromso 2022-2023 Title: Presenting CODS (Cell Organelle Dynamic Simulation) Link
Teaching Assistant	Cloud and Big Data Technology (<i>INF-2220-1 21H</i>) at UiT Tromso Fall 2021, 2022, 2023 Artificial Intelligence, AI - Methods and Applications (<i>INF-2600-1 23V</i>) Spring 2023, 2024
Reviewer	Conference: 2 papers at ICASSP 2024; 2 papers at ICDEC 2023 Journal: 1 paper at Nordic Machine Intelligence (NMI) 2023
Program Committee	International Conference on Neural Information Processing (ICONIP2023)
Mentor	Mentor at Data Science Club (DSC), IIT (ISM) Dhanbad, 2019-20.

Dissemination

Talk	Gave a 30-minute talk on "In-context Learning, Fine-tuning and RLHF in LLMs" at the
	LLM Workshop organized by Bio-AI Lab in collaboration with NORA and DLN.
	Date: 28th Oct, 2023 Place: Tromso, Norway Presentation Link

- BLOGS Challenges of early career researchers. Link Why PhD: Self-contemplation. Link
- VIDEOS Explanation of Mabnet Article. Link Explanation of Auxiliary Network Article. Link

Management: Office Bearer

Board Member	Member of Digital Life Norway - Junior Research Group for 2023-Present.
Board Member	Member of Tromsøstudentenes Idrettslag Volleyball for 2022-23.
Nominated Member	Dean Students Welfare, IIT (ISM) Dhanbad 2019-20.
Member	I look after the students' school affairs at Kartavya (Student Run NGO) 2016-20.
G.Sec., Sports	General Sports Secretary of IIT (ISM) Dhanbad for the session 2018-19.
CAPTAIN	Led IIT (ISM) Volleyball Team at Inter IIT Sports Meet 2017 & 2018.
Secretary	Coordinator of IIT (ISM) Volleyball Club for the session 2016-18.

Management: Organizer

Organizer	Organized Large Language Model Workshop at UiT, Tromso. Link 27-28th Oct, 2023
Organizer	Coordinated Inter Hostel General Championship 2017 and 2018.
Event Head	Coordinated Annual Sports Meet 2018.
COORDINATOR	Coordinated CONCETTO (University Technical Fest) 2018.

Member

Digital Life Norway, 2022-Present. Norwegian Artificial Intelligence Research Consortium, 2021-Present. Institute of Electrical and Electronics Engineers (IEEE), 2023. Society of Industrial and Applied Mathematics - IIT (ISM), 2015-20. Society for Applied Mathematics - IIT (ISM), 2015-20.

Others

Player	Division 2 Volleyball Player at Tromsøstudentenes Idrettslag, 2021-Present.
Moderator	Moderated Large Language Model workshop at UiT, Tromso. Link 27th Oct, 2023
CHAMPION	Won Volleyball Tournament at Parakaram (Inter-University Sports Fest), IIT (ISM),
	2015-16.

COMPUTER SKILLS

LANGUAGE:	Python, R, C++, C, Java, HTML, LaTeX, JavaScript
CONCEPTS:	Linux, Kubernetes, Docker, AWS, Azure, Infrastructure as Code, CI/CD
LIBRARIES:	PyTorch, Keras, Tensorflow, Sklearn, Pandas, Numpy, Matplotlib
TOOLS:	Visual Code, Git, Terraform, Puppet, Chef, Ansible, Jira, MySQL, Jenkins

Awards

2023	Visiting researcher grant for 3 months stay at NUS, Singapore awarded by UiT.
2017, 2018 & 2019	MERIT CUM MEANS (MCM) Scholarship offered by the institute.
2017 & 2018	Director Scholarship for excellence in academics.
2018	Science Academies' Summer Research Fellowship.

ACHIEVEMENTS

15-19 Apr 2024	Runner-up of DLN mini-MBA organized by the Digital Life Norway (certificate)
2015-2020	Gold Medalist in the Applied Mathematics Department, IIT(ISM) Dhanbad
2015	Secured All India Rank 5017 in IIT JEE Advance among 1,50,000+ candidates.
2015	Secured General Merit Rank 51 in WBJEE among 3,00,000+ candidates.
2014	Secured International Rank 23 in Level 1 and International Rank 19 in Level 2 of IN-
	ternational Olympiad of Mathematics.

INTERESTS

SPORTS:	Volleyball, Football, Basketball, Cricket, Badminton, Running, Cycling, Hiking
OTHERS:	Leadership, Management, Finance, Programming, Rubik's Cube, Cooking
LANGUAGES:	Hindi (Native), English, Nepali, Bengali(Intermediate), Norwegian (Beginner)

ACADEMIC COURSES

Doctor of Philosophy

Statistics	Computer-Intensive Statistics
MACHINE LEARNING	Pattern Recognition; MLx Fundamentals 2024 (Certificate)
ETHICS	Theory of Science, Research Ethics and Research Design (Essay)
OTHERS	AFINO & DLN Summer School 2022 – Engaging with Critical Research Within
	Institutions (Essay)

Integrated Masters

- STATISTICS Probability and Statistics; Statistical Inference; Sampling Theory
- MATHEMATICS Discrete Mathematics; Project Management; Operation Research; Topology; Graph Theory; Linear Algebra; Modern Algebra; Theory of Computation; Numerical Methods; Real Analysis; Complex Analysis; Ordinary and Partial Differential Equation; Number Theory
- COMPUTER SCIENCE Object Oriented Programming; Data Structures; Computer Graphics; Design and Analysis of Algorithm; Data Base Management Systems; GPU Computing with CUDA; Operating System; Computer Networks; Computer Organization; Software Engineering; Information and Coding Theory; Software Computing

MOOC COURSES

gnsingh_ism@yahoo.com

krishna.agarwal@uit.no

sb1@nibmg.ac.in

WORK HOURS: 391	University courses
WORK HOURS: 391 2017-2019	Machine Learning - Standford University 98% <u>60 hrs</u> Introduction to Mathematical Thinking - Stanford University 94% <u>39 hrs</u> Reproducible Research - Johns Hopkins University 97% <u>8 hrs</u> Statistical Inference - Johns Hopkins University 100% <u>54 hrs</u> Exploratory Data Analysis - Johns Hopkins University 97% <u>55 hrs</u> Getting and Cleaning Data - Johns Hopkins University 97% <u>20 hrs</u> Regression Models - Johns Hopkins University 100% <u>54 hrs</u> The Data Scientist's Toolbox - Johns Hopkins University 95% <u>18 hrs</u> R Programming - Johns Hopkins University 99% <u>57 hrs</u> Practical Time Series Analysis - State University of New York 98% <u>26 hrs</u>
Work hours: 43	Coursera courses
2019	Neural Networks and Deep Learning - DeepLearning.AI 95% <u>20 hrs</u> Improving Deep Neural Networks - DeepLearning.AI 98% <u>18 hrs</u> Structuring Machine Learning Projects - DeepLearning.AI 87% <u>5 hrs</u>
Work hours: 20	DataCamp courses
2017	Introduction to R - <u>4 hrs</u>
	Intermediate R - <u>6 hrs</u>
	Intermediate R: Practice - <u>4 hrs</u>
	Introduction to Importing Data in R - <u>3 hrs</u>
	Intermediate Importing Data in R - <u>3 hrs</u>
Work hours: 7	LinkedIn courses
2020	Learning Puppet - <u>2 hrs</u>
	DevOps Foundations: Infrastructure as Code - <u>2 hrs</u>
	Learning Ansible - <u>3 hrs</u>
References AVA	NLABLE ON REQUEST
dilip.prasad@	Duit.no Dilip K. Prasad, Professor, Department of Computer Science UiT The Arctic University of Norway
alexander.horsch@	Duit.no <u>Alexander Horsch</u> , Professor, Department of Computer Science

UiT The Arctic University of Norway

UiT The Arctic University of Norway

Samsiddhi Bhattacharjee, Associate Professor

National Institute of Biomedical Genomics, Kalyani

Garib Nath Singh, Professor, Department of Applied Mathematics Indian Institute of Technology (Indian School of Mines), Dhanbad

Krishna Agarwal, Professor, Department of Physics & Tech.